WG 2: Exposures and Vulnerability

activity 4: exposure scenarios

probabilistic modeling

human errors

activity 5: structural behaviour

models and analysis

timber structures

ton vrouwenvelder

tno/tu-delft, the netherlands

Risk based Robustness

Assessment of the probability of occurence of different hazards with different intensities

Assessment of the probability of different states of damage and corresponding consequences for given hazards Assessment of the probability of inadequate performance(s) of the damaged structure together with the corresponding consequence(s)

$$Risk = p(H_{i})p(D_{j}|H_{i})p(S_{k}|D_{j})C(S_{k})$$

$Risk = p(H_{i})p(D_{j}|H_{i})p(S_{k}|D_{j})C(S_{k})$

- hazard models

-member models

-post failure models

Model = physics + statistics

Accidental /natural	Accidental/manmade	Human influences	Normal loads	Human Errors
			(including the	
			tail values)	
Earthquake	Internal explosion	Vandalism	self weight	Design error
Landslide	External explosion	Demonstrations	imposed loads	Material error
Tornado	Internal fire	Terrorist attack	car park loads	Construction error
Avalanche	External fire		traffic	Misuse
Rock fall	Impact by vehicle etc		snow	Lack of maintenance
High groundwater	Mining subsidence		wind	Miscommunication.
Flood	Environmental attack		hydraulic	
Volcano eruption				

JCSS Probabilistic Model Code

- Part 1 Basis of Design
- Part 2 Modeling of loads
- Part 3 Modeling of structural properties

http://www.jcss.ethz.ch/ select "publications" select "jcss model code"

Part 2	Loads Models	Part 3 F	Resistance models
2.0	General	3.0	General
2.1	Self weight	3.1	Concrete
2.2	Live load	3.2	Reinforcement
2.3	Industrial storage	3.3	Prestr steel
2.4	Cranes	3.4	Steel
2.5	Traffic	3.5	Timber
2.6	Car parks	3.6	Aluminium
2.7	Silo load	3.7	Soil
2.8	Liquids/gasses	3.8	Masonry
2.9	Temperature	3.0	Model uncert
2.10	Ground	J.9 2 40	Dimensions
2.11	Water/groundwater	3.10	Dimensions
2.12	Snow	3.11	Imperfections
2.13	Wind		
2.14	Temperature		
2.15	Waves		
2.16	Avalanches		
2.17	Earth quake		
2.18	Impact		
2.19	Explosion		
2.20	Fire		
2.21	Chem/Phys agencies		

Models for normal loads

Modelling of accidental actions (natural / man made)

- \Box Triggering event *H* (place **x**, time *t*)
- Magnitude possibly some other parameters.
- Physical interactions (environment, structure S)
- Damage
- Consequences

Components for the extreme event modelling (S=Structure, H= Hazard event)

Impact scenario model

variable	designation	type	mean	stand dev
n	number of lorries/day	deterministic	5000	-
Т	reference time	deterministic	100 years	-
λ	accident rate	deterministic	10 ⁻¹⁰ m ⁻¹	-
b	width of a vehicle	deterministic	2.50 m	-
α	angle of collision course	rayleigh	10°	10 [°]
v	vehicle velocity	lognormal	80 km/hr	10 km/hr
а	deceleration	lognormal	4 m²/s	1.3 m/s ²
m	vehicle mass	normal	20 ton	12 ton
k	vehicle stiffness	deterministic	300 kN/m	-

Table 4.2.1: Data for probabilistic collision force calculation

Life time exceedence probability: 10⁻³

INTERNAL NATURAL GAS EXPLOSIONS

$$p_d = \max\{3 + p_v, 3 + 0.5 p_v + 0, 04 / (A_v / V)^2\}$$

 $p_{d} = \text{equivalent static pressure [kN/m²]}$ $A_{v} = \text{area of venting comp}$ V = volume of room [m³] load duration = 0.2 s 10-1000 kpa reaction zone $x = \frac{10-1000 \text{ kpa}}{x}$

Figure 1: Pressure waves inside the explosion medium: (a) deflagration, (b) detona

Ljubljana, Sept 2009 - COST Action TU0601 - Robustness of Structures

h

UK statistics

	Annual probability of occurrence in dwellings	Possible pressure
Reported explosion but not significant	0.064 x 10 ⁻⁴	<<17 kN/m²
Moderate explosion	0.010 x 10 ⁻⁴	<17 kN/m²
Severe explosion	0.005 x 10 ⁻⁴	>17 kN/m²
Very severe explosion	0.0002 x 10 ⁻⁴	>>17 kN/m ²

Observed scatter in explosions

Observed scatter in explosions

Observed scatter in explosions

Unidentified conditions

- objectively unknown (unforeseeable)
- in principle known, but difficult to recognize (unforeseen)
- known, but ignored for several reasons (not foreseen)

Unidentified conditions

objectively unknown (unforeseeable)

□ in principle known, but difficult to recognize (unforeseen)

known, but ignored for several reasons (not foreseen)

What is a reasonable probability of the (effects of) unforeseeable, unforeseen or otherwise neglected actions?

Unidentified conditions

objectively unknown (unforeseeable)

□ in principle known, but difficult to recognize (unforeseen)

known, but ignored for several reasons (not foreseen)

For discussion: consider an unidentified conditions as included in the list of human errors

• DATA ??

Thomas Bayes

the more data the better

but:

no data = no excuse.

